# Combined Heat and Power: U.S. Status and Overview

Ted Bronson
Associate Director
Distributed Energy Resource Center
Gas Technology Institute



Southeast CHP Initiative Meeting Southface Energy Institute September 26, 2002

### Overview

- Introduction
- Benefits / Opportunity for CHP
- Government Commitment(s)
- CHP Market
- CHP Technology
- Market Challenges / New Thinking
- Regional CHP Initiatives and Activities
- Conclusions



### The Southeastern USA





### Introduction

- Business Week #1 of 21 ideas for the 21<sup>st</sup>
   Century Distributed Generation
- EIA estimates 42% Growth in Electricity Demand over next 20 years: > 400GWs
- DG provides potential to recover the waste heat
- CHP / Cogeneration / BCHP / DG / DE / DER:
- Technology Right Here Right Now!



### What is CHP?

- Integrated System
- Source of Generation Located At or Near the Point of Use
- Provides a Portion of the Electrical Load
- Utilizes the Thermal Energy
  - Cooling
  - Heating
  - Dehumidification
  - Process Heat



## Why is There an Opportunity?

### Rising Concerns Over

- Blackouts/Brownouts
- Power Supply Constraints (Aging infrastructure)
- Electricity Prices
- Environment
- Power Security

### Selected Power Outage Costs

| Industry                | Avg. Cost of Downtime |  |
|-------------------------|-----------------------|--|
| Cellular Communications | \$41,000 per hour     |  |
| Telephone Ticket Sales  | \$72,000 per hour     |  |
| Airline Reservations    | \$90,000 per hour     |  |
| Credit Card Operations  | \$2,580,000 per hour  |  |
| Brokerage Operations    | \$6,480,000 per hour  |  |



### Can this be true?



## Benefits of CHP

- Conservation of Natural Resources
- Addresses Environmental Concerns
  - High efficiencies currently only existing way to reduce carbon emissions and work to meet Kyoto accords
  - Output from prime mover technologies can be less than that of average emissions from central power plants
  - Facilitates deployment of new clean energy technologies
  - For buildings, can use to improve indoor air quality
- Can be used to improve grid utilization and
  - Improve end-user power reliability
  - Improve grid reliability / supplement aging areas of grid
  - Reduce peak power load demand on grid
- Lower overall energy costs



### NOX & DG/CHP





### Government Commitment

- President Bush's National Energy Policy
- U.S. DOE's CHP Challenge
  - Double CHP in U.S. by 2010
  - U.S. DOE / U.S. CHPA / U.S. EPA roadmap
- U.S. EPA CHP Partnership



# National Energy Policy

- CHP plays a major role in the National Energy Plan
  - Advantages:
    - High efficiencies result in lowering carbon emissions
    - Eliminates need to construct power lines
    - Replaces old ineffective boilers
  - Recommendations
    - Encourage EE through CHP by shortening depreciation life or providing an investment tax credit
    - EPA to promote CHP through flexibility in environmental permitting (EPA CHP Partnership)
    - Secretary of Energy to propose comprehensive energy legislation that promotes competition, protects consumers, enhances reliability, improves efficiency, promotes renewable energy, etc...

Bush Administration, "National Energy Policy Report," May 2001



## U.S. DOE's CHP Challenge

- Double CHP in U.S. from 46 to 92 GWs by 2020
  - Established in 1998 under Clinton
     Administration with DOE and EPA
  - Regional and National Roadmap workshops
    - Over 100 industrial, environmental, and government stakeholders involved to develop roadmap
    - Developed detailed action plans to achieve goals
    - October 2000: Baltimore, Md, National CHP Roadmap
    - October 23-25<sup>th</sup>, 2002, Boston, Mass National CHP Roadmap update



# EPA CHP Partnership

 Voluntary program with Industry, States, and Local governments to promote the environmental and energy benefits of CHP (<u>www.epa.gov/chp</u>).

| BellSouth      | Verizon           | <ul><li>International<br/>Paper</li></ul> |
|----------------|-------------------|-------------------------------------------|
| Dow Chemical   | ■ Texaco          | US Steel                                  |
| Exxon Mobil    | Archer Daniels    | Caterpillar                               |
| Solar Turbines | ■ Bethlehem Steel | Real Energy                               |



### CHP Market

- Industrial: Traditional CHP
  - Approximately 1000 installations, 45 GWs
  - Average 45 MWs, Mean 25 MWs
  - Remaining Potential: 88 GWs (30 % penetration)
  - Key industries: Chemical, paper, oil refining, food, primary metals
- Commercial: Emerging CHP
  - Approximately 1000 installations, 5 GWs
  - Average 5 MWs, Mean, .7 MWs
  - Remaining Potential: 75 GWs (94%)
  - Key applications: Colleges, District Energy,
     Government, Hospitals, Solid Waste, Offices, hotels



# Potential for CHP in Commercial Applications Is Large

### **Estimated CHP Potential: 75 GW**





## CHP Technologies

- Cooling Equipment
  - Mechanical Chillers
  - Absorption Chillers
  - Thermal Storage
  - Desiccant Dehumidification
- Heat Recovery Systems
  - Hot Water
  - Steam
- Electric Generation Equipment
  - Reciprocating Engines
  - Turbines/Microturbines
  - Fuel Cells



# On-site Power Technologies: Microturbines

#### 2002

17-30% Efficiency (LHV)
 28 – 100 kW
 Double digit ppm NO<sub>x</sub>
 Niche markets



#### 2012

40% Efficiency (LHV)
 28 – 400 kW
 Single digit ppm NOx
 Integrated and temperature
 matched IES

# Large On-site Power Technologies:

(2 to 6 MW) Reciprocating Engines

2002

25 - 40% Efficiency (LHV)2-3 grams/kWh NO<sub>x</sub>







2012

less than 0.15 grams/kWh NOx Integrated jacket water and exhaust gas recovery systems for IES



## On-site Power Technologies: Advanced Turbines

#### 2002

36 - 40% Efficiency (LHV)Prototype 3.8 MW



### 2012

> 40% Efficiency (LHV)
 multiple sizes
 exhaust gas recovery
 systems for IES



# Future On-site Power Technologies:

Stationary Fuel Cells

2002 \$4500 - \$15,000 / kW









2012 \$1500 / kW



Thermally Activated Technologies: LiBr Absorption Chillers

#### 2002

Good technologies, but limited penetration



#### 2012

Significant market penetration through 25% cost reduction 30% more efficiency and integration with IES – e.g. air cooled condensers units less than 150 RT, and temperature matching



# Thermally Activated Technologies:

Desiccant Dehumidifiers

### 2002

Niche market equipment for high value humidity control applications



#### 2012

 Mainstream humidity control using new solid desiccant materials & new liquid technologies resulting in 50% cost reductions



## Typical Commercial CHP System



## DOE Modular/Packaged System Awards



# CHP Modular/Packaged System







# Market Challenges

- Policy / Institutional Barriers
  - Electric Utility perceptions
  - Interconnection requirements and fees (Making Connections, IEEE P1547)
  - Tariff Structures
    - Re-negotiated rates
    - Standby Charges (discrimitory or denial)
- Education and Outreach
  - Potential end-user communities
  - Architects and Engineers
  - Electric and environmental policy makers
- Capital Cost Reduction



# New Thinking on DE /CHP

- Answers to address myths concerning DE/CHP:
  - DE results in increased power costs for captive grid customers, most notably the poor
    - Answer: DE only represents portion of planned growth, and will serve to increase grid utilization and moderate electricity prices
  - Too much DE may cause instability to the grid
    - Answer: Recent GE study identified virtually no impact to 20%; Holland and Denmark utilizing over 40 and 50% DE.
  - DE / CHP is dirty
    - Answer: DE / CHP is not backup / standby diesel generators. See first slide on environmental benefits.



# New Thinking on DE /CHP

By 2020, EIA forecasts a total of 403,000 MW new or replacement capacity





# Emerging Policy Issues

### Southern Governors' Association Resolution Regarding Transmission Pricing

 Urges FERC to require Transmission upgrade costs to be paid for by the customers proportionate to the benefits received

### National Energy Bill

- Efforts continuing right now
- USCHPA leading industry efforts to influence lanuguage including provisions for interconnection, net metering, and tax credits

### FERC ANOPR on Interconnection (8/16/2002)

- Adoption of standard small generator (<20 MW) interconnection agreements and procedures (Docket No. RM02-12-000)
- FERC Jurisdiction:
  - Transmission: Wholesale and Retail
  - Distribution: Wholesale
- USCHPA again driving key policy



## The Value Proposition

- CHP systems provide multiple benefits that reflect customer value streams...
- Value Proposition =

but we are not capturing all these values in the market place at this time.

- The trends are clear:
  - The economy will rebound
  - Energy use will increase
  - Solving Transmission bottlenecks will be expensive raising the price of electricity
  - Distribution systems are deteriorating repairing these systems may be cost prohibitive in some cities
  - Increasing pressure for 99.999% reliability with a system capable of 99.9% at best



## Regional Initiatives and Activities

### **Southeast CHP Initiative**

### Mission:

- Lead efforts in the Region to meet U.S. DOE's goal of doubling CHP in the U.S. by 2010 in order to:
  - Improve the environment
  - Improve energy efficiency / conserve natural resources
  - Improve energy security
  - Enhance the areas economic viability.

### The group will fulfill the above mission by :

- Leading the Region in encouraging the use of and implementation of CHP technologies;
- Driving CHP roadmap action Items for the Southeast Region
- Providing a central point for coordination and communication among the various stakeholder organizations in the region.
- ACTION ORIENTED
- Success may lead to DOE investment in CHP Application Center



## Summary: The CHP Solution

- CHP can present considerable benefits to environment, the electric grid, and to consumers
- Efforts needed to continue development and demonstration of CHP systems for Commercial use
  - Publicize key installations and technologies
  - Monetize benefits of reliability
  - Pricing structures may change as metropolitan grid is challenged to meet demand
- Support needed for policy changes and educational and outreach efforts through:
  - National efforts with the U.S. Combined Heat and Power Association
  - Regional efforts with the SE CHP Initiative
  - U.S. Department of Energy's Atlanta Regional Office
- Incorporate CHP goals into State Energy Plans and Metropolitan Energy Planning



## Questions / Contact Info

Ted Bronson, GTI, Distributed Energy Resource Center

ted.bronson@gastechnology.org (847) 768-0637

Terri Roberts, U.S. DOE Atlanta Regional Office (404) 562-0566

terri.roberts@ee.doe.gov

- Key websites
  - www.nemw.org/uschpa/regional.htm#midw (MWCHP Initiative)
  - www.chpcentermw.org (MW CHP Application Center)
  - www.nemw.org/uschpa (USCHPA / National Roadmaps)
  - www.eren.doe.gov/der (U.S. DOE DER efforts)
  - www.epa.gov/uschpa (U.S. EPA CHP Partnership)

